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Quantum Logic, Probability, and Information:
The Relation With the Bell Inequalities
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We study the relation between the Bell inequalities—characteristic of noncontextual
hidden variables theories of quantum mechanics—with quantum logic, quantum prob-
ability, and quantum information. The emphasis is on clarity and simplicity, although
sometimes this implies a lack of mathematical rigor which, I hope, could be resolved
without difficulty by the reader.
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1. HIDDEN VARIABLES THEORIES

The question of hidden variables in quantum mechanics aroused soon after
the formulation of the theory during the years 1925–26. It was explicitly mentioned
in the book by von Neumann in 1932 (von Neumann, 1995), where he derived a
celebrated no hidden variables theorem. From that time many books and articles
have been devoted to the subject. Nevertheless, there is no sharp definition of
hidden variables (HV) theory which is widely accepted. I propose the following:

Definition 1.1. HV is a theory physically equivalent to quantum mechanics (that
is giving the same predictions for all experiments) which has the formal structure
of classical statistical mechanics.

The definition may be illustrated in the following table (Table I) giving the
correspondence of concepts in experiments, standard quantum theory, and a pos-
sible HV theory:

The parameter (or parameters)λ is usually called thehidden variable. Two
observables,A andB, which are associated to commuting operators,Â andB̂, are
saidcompatible. The correlation may be extended to more than two compatible
observables. It is easy to see that the latter equality implies the equality of the
joint probability distributions of compatible observables. In fact, it is enough to
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Table I. Correspondence of Concepts

Empirical Quantum theory HV theory

Physical system state Hilbert space H vector|9 ∈ H Phase space3 probability densityρ(λ)
ObservableA Self-adjoint operator̂A 〈9|Â|9〉 FunctionA(λ) = ∫ A(λ)ρ(λ) dλ

expectation value
Correlation If ÂB̂ = B̂ Â, 〈9|ÂB̂|9〉 =∫

A(λ)B(λ)ρ(λ) dλ

substitute exp(i ξ Â) for Â and exp[i ξ A(λ)] for A(λ) in the equality, and similar for
B, in order to show the equality of the characteristic function of the joint probability
distribution. On the other hand, it is well known that quantum mechanics does not
provide joint distributions of observables not compatible (the associated operators
noncommuting). For the sake of clarity, in the table we have considered only
quantum pure states. The most general states are associated to density operators, ˆρ

and the quantum expectation value and correlation should be written, respectively

Tr(ρ̂ Â), Tr(ρ̂ ÂB̂).

To make clear what is the content of the theorems against HV theories, dis-
cussed later, I propose the following:

Definition 1.2. A simple experiment consists of the preparation of a state of a
physical system, followed by the evolution of the system and finishing with the
measurement of a set of compatible observables.

Definition 1.3. A composite experiment consists of several simple experiments
with the same preparation and the same later evolution, but measuring different
sets of compatible observables in each simple experiment.

With these definitions we may state the following theorem:

Theorem 1.4. For any simple experiment there exists a HV theory.

Proof: The essential part of the proof is to show that for any state|9〉 and two
compatible observablesA, B the expectation may be obtained in the form

〈9|ÂB̂9〉 =
∫

A(λ)B(λ)ρ(λ) dλ. (1.1)

For simplicity we consider just two observables, but the generalization to any finite
number is trivial. To proceed with the proof we recall that there exists a complete
set of orthonormal vectors which are simultaneous eigenvectors of two commuting
self-adjoint operators. Let us label|λ〉 one of the common eigenvectors ofÂ and
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B̂. Complete means that ∫
|λ〉〈λ | dλ = 1, (1.2)

which leads to

〈9|ÂB̂|9〉 =
∫

dλ dλ′dλ′′〈9 | λ〉〈λ | Â | λ′〉〈λ′ | B̂ | λ′′〉〈λ′′ | 9〉

=
∫

dλ〈9 | λ〉〈λ|Â|λ〉〈λ|B̂|λ〉〈λ | 9〉

=
∫

dλ | 〈9|λ〉|2〈λ|Â|λ〉〈λ|B̂|λ〉. (1.3)

This has the structure of the right side of Eq. (1.1) provided we identify〈λ|Â|λ〉
with the functionA(λ) and|〈9 | λ〉|2 with the densityρ(λ). Indeed, the density
is positive and normalized (the latter because Eq. (1.2)). The second equality of
Eq. (1.3) follows from the equality

〈λ|Â|λ′〉 = 〈λ|Â|λ〉δ(λ− λ′), (1.4)

δ being Dirac’s delta, which is a consequence of|λ〉 and|λ′〉 being eigenvectors
of Â.

We see that hidden variables are always possible, a fact made clear by J. S. Bell
in 1966 (Bell, 1966, 1987). However, some families of HV theories are excluded,
for instance those in which expectations fulfill linear relations of the form

〈9 | Â+ B̂ | 9〉 =
∫

[ A(λ)+ B(λ)]ρ(λ) dλ, (1.5)

The impossibility of such HV theories is the content of von Neumann’s theorem
mentioned above (von Neumann, 1955). Assumption (1.5) is unphysical, as pointed
out by Bell (1966, 1987), which shows that von Neumann’s theorem is not very
relevant. More physical requirements are nonocontextuality and locality which we
discuss in the following section. ¤

2. NONCONTEXTUALITY, LOCALITY, AND THE
BELL INEQUALITIES

Definition 2.1. A HV theory is noncontextual if there exists a joint probabil-
ity distribution for all observables of the system (even if some of them are not
compatible.)

In particular this implies that the marginal for the variableA in the joint
distribution of the compatible observablesA and B is the same as the marginal
for A in the joint distribution of the compatible observablesA andC, even if B
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andC are not compatible. For this reason noncontextuality is sometimes stated
saying that the result of measuringA does not depend on the context (in particular,
the result is the same whether we measureA together withB or we measureA
together withC; remember thatA, B, C cannot be measured simultaneously, that
is with the same experimental set up). This property is true in quantum mechanics,
but the existence of a joint distribution is a stronger constraint. What is required
is the existence of some function of all the observables,p(A, B, C . . .), which
fulfills the mathematical properties of a joint probability distribution and it is such
that the marginals for every subset of compatible observables is the same given by
quantum mechanics. The said distribution is just a mathematical object (it cannot
be measured if some of the observables are not compatible) but their mere existence
puts constraints which may be tested empirically.

It is not difficult to see that the existence of a joint distribution for
the observablesA, B, C, . . . is equivalent to the existence of a positive nor-
malized function,ρ(λ) of a variable or set of variables,λ, and functions
A(λ), B(λ), C(λ) . . .However a joint probability distribution cannot be obtained
with the construction of Eq. (1.3) if the observables are not compatible. This is
because a complete orthonormal set of simultaneous eigenvectors ofÂ, B̂, Ĉ, . . .
may not exist if the operators do not commute pairwise. What may be obtained
are several HV theories, one for each simple experiment. For instance, let us con-
sider a composite experiment consisting of two simple ones. In the first, where we
measureA andB, a HV theory should provide the functionsρ1(λ), A1(λ), B1(λ).
In the second, where we measureA andC, a HV theory would giveρ2(λ), A2(λ),
C2(λ). The two HV theories together might be called a HV theory for the compos-
ite experiment. It would be noncontextual ifρ1(λ) = ρ2(λ) andA1(λ) = A2(λ), if
this does not happen it should becontextual.

The impossibility of noncontextual theories is established by the following

Theorem 2.2. Noncontextual HV theories do not exist for all (composite)
experiments.

This is usually called Kochen–Specker theorem (Kochen and Specker, 1967;
reprinted in Hooker, 1975, 1979) after the authors who proved it in 1967. However
the theorem had been actually proved 1 year earlier by Bell (1966, 1987) and it is
a rather direct consequence of a theorem proved by Gleason (1957, reprinted in
Hooker, 1957, 1979). We shall give here a proof inspired in the celebrated theorem
of Bell against local hidden variables (Bell, 1964, reprinted in Bell, 1987).

Proof: It is enough to exhibit a particular type of composite experiment where
the quantum predictions are incompatible with the existence of a joint probability
distribution for all observables. We consider four dichotomic observables,A, B,
C, andD, each of which may take the values 0 or 1. We assume thatA andC are
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not compatible, andB andD are also not compatible, the remaining pairs being
compatible. The corresponding operators will be projectors, i.e.,Â2 = Â, etc., all
pairs commuting except

[ Â, Ĉ] 6= 0, [B̂, D̂] 6= 0. (2.1)

Let us labelpA the probability ofA = 1, pAB the probability thatA = B = 1, etc.
The existence of a joint distribution means that there are 15 positive quantities

pA, pB, pC, pD, pAB, pAC, pAD, pBC, pBD, pCD,

pABC, pABD, pACD, pBCD, pABCD, (2.2)

which should fulfill the relations

0≤ pABCD≤ pABC≤ pAB ≤ pA ≤ 1, (2.3)

and those obtained by all permutations of the labels. Only eight of these quantities
may be measured (and they are predicted by quantum mechanics), namely

pA, pB, pC, pD, pAB, pAD, pBC, pCD. (2.4)

The remaining seven quantities cannot be measured, the corresponding observables
not being compatible, and quantum mechanics gives no value for them.

The question is whether there exist seven quantities fulfilling all constraints
of the type (2.3) which added to the eight measurable ones provide the desired
joint probability distribution (2.2). As will be discussed in Section 4, a necessary
condition is the fulfillment of the following inequality:

pB + pC ≥ pAB+ pBC+ pCD− pDA, (2.5)

and the other three obtained by permutations involving the measurable quantities
(2.4). The inequality (2.5) is called a Bell inequality (Bell, 1964) and, in this
form, it was derived by Clauser and Horne (1974). The rest of the proof consists
of showing that there are states and observables for which quantum mechanics
violates the inequalities, which may be seen elsewhere, e.g., in clauser and Horne,
1974.

Instead of observables taking the values 0 or 1, we might use observables
taking the values−1 or+1. They are trivially related to the previous ones by

a = 2A− 1, b = 2B− 1, etc. (2.6)

and the inequality (2.5) takes the form of Clauser–Horne–Shimony–Holt (CHSH:
1974)

|〈ab〉 + 〈bc〉 + 〈cd〉 − 〈ad〉| ≤ 2. (2.7)

Therefore this, CHSH, and the Clauser–Horne inequalities (2.5) are equivalent.
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An important class of HV theories arelocal HV theories. The concept of local
applies to EPR experiments. We call EPR (Einsteinet al., 1935; Wheeler and Zurek,
1983) an experiment where we prepare locally a system which is later divided in
two subsystems, each of which moves in a different direction. Measurements on
each subsystem are later made at space-like separation (in the sense of relativity
theory). ¤

Definition 2.3. A HV theory is local if, for any EPR experiment where we may
measure one of several observables,Ai , of the first subsystem and one of several
observables,Bj , on the second, there exist a joint probability distribution for all
the observables{Ai , Bj ; i , j = 1, 2,. . .}.

The impossibility of local HV theories is established by the celebrated Bell’s
theorem of 1964 (Bell, 1964).

Theorem 2.4. Local HV theories do not exist for all (EPR) experiments.

Proof: The proof is the same as for noncontextual HV theories, but considering
an EPR experiment. That is, the observablesA,C belong to one subsystem andB, D
to the other subsystem. In particular, this guarantees that the pairs{A, B}, {A, D},
{C, B}, and{C, D} are compatible because they belong to space-like separated
regions (the condition that space-like separated observables are compatible is called
microcausalityin quantum field theory).

The class of local theories is wider than that of noncontextual HV theories
because the constraints in their definition are weaker. Indeed, in local theories
the existence of a joint distribution is only required for EPR experiments, but
noncontextual theories assume it for all experiments. Consequently the empirical
disproof is easier for noncontextual theories than for local theories. In the former
it is enough to perform a composite experiment where the measurements are made
locally, the latter requires measurements at space-like separation.

The fact that the proofs of both theorems are very similar has been a source
of misunderstanding, like the assertion that locality is not needed in order to prove
Bell’s theorem. I hope that in our presentation the point is clear enough. ¤

3. QUANTUM INFORMATION

The amount of information is quantified with the concept ofentropy. In
classical physics, if we have a continuous random variable,λ, with a probability
distributionρ(λ), the entropy,Sc, as defined by Shannon is

SC = −
∫
ρ(λ) logρ(λ) dλ. (3.1)
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The quantum entropy was defined by von Neumann in terms of the density operator,
ρ̂, with an expression which looks similar to the one, namely

SQ = −Tr(ρ̂ log ρ̂). (3.2)

In both casesS≥ 0 and the entropy increases with the lack of information, so that
the pure states (maximal information) corresponds toS= 0.

There are two other properties which hold true for both classical and quantum
entropy:

Concavity. λS(ρa)+ (1− λ)S(ρb) ≤ S(λρa + (1− λ)ρb), 0≤ λ ≤ 1, whereρa

stands for either the classical probability density,ρa(λ), or the quantum den-
sity operator, ˆρa, and similarlyρb for a different probability density or density
operator of the same system.

Additivity. S(ρ12) ≤ S(ρ1)+ S(ρ1), whereρ12 stands for either the classical prob-
ability density,ρ12(λ1, ρ2), or the quantum density operator,P̂12, the subindex
1 (2) referring to the first (second) subsystem of a composite system, and we
have

ρ1(λ1) =
∫
ρ12(λ1, λ2) dλ2, ρ̂1 = Tr2ρ̂12. (3.3)

There is, however, a property which dramatically distinguish classical from
quantum entropy. In fact, in the case of a system consisting of two subsystems,
the classical, Shannon’s, entropy fulfills

SC(ρ12) ≥ max(SC(ρ1), SC(ρ2)), (3.4)

while the quantum entropy fulfills the weaker triangle inequality

SQ(ρ̂12) ≥ |SQ(ρ̂1)− SQ(ρ̂2)|. (3.5)

In my opinion, the fact that the quantum entropy does not fulfill an in-
equality similar to (3.4) is highly paradoxical, I would even say bizarre. In fact,
(3.5) allows for the possibility that bothSQ(ρ̂1) andSQ(ρ̂2) are positive while
SQ(ρ̂12) is zero. This should be interpreted saying that we have complete infor-
mation about a composite system whilst we have incomplete information about
every subsystem. This contrast with the classical, and intuitive idea that full
information about the wholemeansthat we have complete information about
every part. In my view, this is indicative that the concept of “complete” informa-
tion in quantum theory is not the same as in classical physics, and the different
meanings of completeness has been the source of misunderstandings about the
interpretation of quantum theory, for example, in the debate between Einstein
and Bohr.

The violation of an inequality similar to (3.4) is closely related to the
violation of the Bell inequality. But in order to establish the connection it is
necessary to introduce the concept oflinear entropy. Actually, although the
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definitions of entropy (3.1) and (3.2) are standard and in some sense an optimum,
it is possible to give alternative definitions of entropy which fulfill the essential
properties of concavity and additivity. The most simple are the linear entropies

SCL = 1−
∫
ρ(λ)2 dλ, SQL = 1− Tr(ρ̂2). (3.6)

The desired connection between linear entropy and the Bell inequalities
has been studied by several authors in the last few years. For instance Horodecki
et al.(1996) proved that the inequality (3.4) is a sufficient condition for the Bell
inequalities. A slightly stronger result may be stated as follows:

Theorem 3.1. The inequality

SQL(ρ̂12) ≥ 1

2
[SQL(ρ̂1)+ SQL(ρ̂2)],

is a sufficient condition for the Bell inequalities (2.5) or (2.7).

Proof: We consider observables{a, b} for the first particle and{c, d} for the
second, all of which may take values 1 or−1, and the associated operators,Â, B̂, ĉ,
andd̂. We define the Bell operator,̂B, by

B̂ = Â⊗ B̂+ ĉ⊗ B̂+ ĉ⊗ d̂ − Â⊗ d̂. (3.7)

It is easy to see that

TrB̂ = 0, Tr(B̂2) = 16, (3.8)

and that the Bell inequality (2.7) is violated if

|β| > 2, β ≡ Tr(B̂ρ̂12), (3.9)

(while quantum mechanics predicts just|β| ≤ 2
√

2). Now from the obvious in-
equality

Tr

(
ρ̂12− 1

2
ρ̂1⊗ Î2− 1

2
Î1⊗ ρ̂2+ 1

4
Î1⊗ Î2+ λB̂

)2

≥ 0, ∀λ ∈ R, (3.10)

where Î1( Î2) is the identity operators for the first (second) particle, we get after
some algebra

2Tr
(
ρ̂2

12

)− Tr
(
ρ̂2

1

)− Tr
(
ρ̂2

2

) ≥ 1

8
(β2− 4). (3.11)

Hence the inequality (3.11) implies|β| ≤ 2, which proves the theorem. ¤
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4. QUANTUM LOGIC AND QUANTUM PROBABILITY

The concept of quantum logic was introduced by Birckhoff and von Neumann
in 1936 (Birckhoff and von Neumann, 1936). Their starting point was the associa-
tion of propositions with projection operators. They postulated that the proposition
associated to the projectorP̂ is true (or false) if the vector|9〉 is an eigenvector of
P̂ (or Î − P̂). This may seem a natural assumption, but gives rise to a trivalent logic
where propositions may be, besides true or false, also undefined (if|9) is neither
an eigenvector of̂P nor an eigenvector of̂I − P̂.) As projectors are associated to
closed subspaces of the Hilbert space, we see that propositions are associated to
such subspaces.

From this assumption it is straightforward to define a partial ordering amongst
propositions. We say that, for two propositions A and B we have A≤ B if the
subspace associated to B contains that associated to A. Hence it is straightforward
to define the binary operations “meet”,f and “join,” g, of propositions and it
follows that the propositions form a lattice. The lattice isorthocomplemented(for
each proposition A there exist another one, A, which is true if and only if the first
is false) andcomplete(there exist the sure proposition, I, corresponding to the
whole Hilbert space and its negation,8, the absurd proposition). All this is similar
to what happens with the classical propositions, which is a Boolean algebra, that
is adistributive lattice. But the quantum lattice is not Boolean (distributive) at a
difference with the classical one. As a conclusion the authors claim that the non-
Boolean character of the lattice of propositions is the essential characteristic of
quantum theory. The details may be seen in the original article (Birckhoff and von
Newman, 1936).

In the 70 years elapsed since the work of Birkhoff and von Neumann many
articles and several books have been devoted to the subject of quantum logic (see
e.g., in Hooker, 1975, 1979), in many cases starting from different definitions
of quantum propositions. Also some criticisms have aroused in the sense that
“quantum logic” is not a true logic, but just a propositional calculus.

It is straightforward to define a probability distribution (or “state”) on a lattice
as follows

Definition 4.1. If L is a lattice, a probability distribution is a mappingp :L→
[0, 1] with the axioms

(1) p(8) = 0, p(I ) = 1, where8(I ) is the absurd (sure) proposition,
(2) If {Ai } is a sequence such thatAi ≤ A′j , A′ being the negation ofA, for

all pairsi 6= j , then
∑

i p(Ai ) = p(gAi ),
(3) For any sequence{Ai }, p(Ai ) = 1 ∀i ⇒ p(fAi ) = 1.

Thus from the quantum logic, as defined by Birkhoff and von Neumann, we
get a quantum probability, while the classical, Boolean, lattice of propositions gives
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the standard probability. Indeed, the above axioms are simply a generalization of
axioms of probability as stated by Kolmogorov.

The connection between probability and the Bell inequality appears as fol-
lows. For any two propositionA, B ∈ L we may define a function,d(A, B), as
follows

d(A, B) = p(AgB)− p(AfB). (4.1)

That function has the properties

0≤ d(A, B) ≤ 1, d(A, A) = 0, d(A, A′) = 1, (4.2)

and provides some measure of the “distance” between two propositions in a given
state (probability distribution). The function is called ametric (pseudometric)if
the following additional property holds (does not hold) true

d(A, B) = 0⇒ A = B, (4.3)

but this property is not very relevant for our purposes. More important are the
following triangle inequalities, which are (are not generally) fulfilled if the lattice
is (is not) Boolean

|d(A, B)− d(A, C)| ≤ d(B, C) ≤ d(A, B)+ d(A, C). (4.4)

As the Boolean character provides the essential difference between classical and
quantum theories, according to Birckhoff and von Neumann (1936), we see that the
inequalities (4.4) give a criterium to distinguish both theories. The interesting point
is that these inequalities are closely related to the Bell inequalities (Santos, 1986).
In quantum mechanics, if we consider three compatible observables,{A, B, C},
the inequalities (4.4) hold true because the lattice of commuting observables is
Boolean. On the other hand, if two of the observables, sayA and B, are not
compatible then their distance is not defined because quantum mechanics does not
provide a joint probability of two incompatible observables (and it is assumed that
they cannot be measured simultaneously). However there are inequalities, derived
from (4.4), which may be violated by quantum mechanics and tested empirically.
In fact, if we consider four observables{A, B, C, D} it is easy to see that the
inequalities (4.4) lead to

d(A, D) ≤ d(A, B)+ d(B, C)+ d(C, D). (4.5)

It may be realized that this is just the Bell inequality (2.5).
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